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Experimental search for the effect of compressibility 
in unsteady Couette flow 
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Purdue University, Lafayette, Indiana . 
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Solution of the compressible Rayleigh problem involving an impulsively moved 
flat plate indicates that transverse velocities can be generated by a purely 
longitudinal shearing motion. It would be desirable to demonstrate the existence 
of these waves, and to do so was the motivation for the present investigation. 
However, the geometry for the Rayleigh problem is prohibitive; and since it was 
noticed that a similar behaviour should occur for the case of unsteady compres- 
sible Couette flow, this was considered for the present investigation. An experi- 
mental search for the existence of the transverse velocities was conducted using 
concentric rotating cylinders to generate the flow. Since these transverse 
velocities were too small to be measured directly, a temperature gradient was 
created across the annulus to take advantage of the much greater sensitivity of 
a hot-wire to temperature fluctuations produced by the fluctuation in the trans- 
verse velocity. The periodic temperature fluctuations noted were converted to 
equivalent transverse velocities. Experimental values obtained agreed qualita- 
tively with the theory. Finally, the role of extraneous effects in the experimental 
apparatus was considered. 

1. Introduction 
Relation to the Rayleigh problem 

The results of the classical incompressible Rayleigh problem, an infinite plate 
moved impulsively from rest parallel to its own plane, indicate that the resulting 
fluid motion is everywhere parallel to the plate and can be expressed rather 
simply in terms of the error function. Recently this problem has been re-examined 
for compressible fluids by a number of authors. In  this case the conservation 
equations are coupled, basically through the viscous dissipation terms, and a 
non-zero transverse velocity occurs. In  fact, as Stewartson (1955) shows, a 
strong shock wave travelling away from the plate can be generated. The total 
flow fieldis madeup of three regions: a viscous boundary layer close to the moving 
plate, a disturbed inviscid region between the boundary layer and shock, and an 
undisturbed region, beyond the shock wave. Mathematically the problem is to 
obtain separate solutions in these regions, and then to match them at the 
boundaries. 

Illingworth (1950) has given a boundary layer solution suitable for large time 
and arbitrary Mach number. Howarth (1951) was able to obtain an expression 
for the pressure field in the compressible case by a linearization process, and he 
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also examined the initial motion without recourse to linearization. Van Dyke 
(1952) treated the non-linear problem and obtained a solution valid for small 
Mach numbers. He obtained a solution for the boundary layer region and the 
outer flow field to the third approximation by iterating between the two solutions. 
His process could be repeated indefinitely, except that the shock discontinuity in 
the outer flow field would have to be included. Finally, Stewartson (1955) con- 
sidered the flow field for large Mach numbers, on the assumptions that the outer 
inviscid flow field and the boundary layer could be treated separately. A detailed 
summary of the existing theories is given by Stewartson (1955). 

Van Dyke's and Stewartson's solutions together cover the complete Mach 
number range for the impulsive plate problem. Stewartson (1955) has compared 
the two solutions and found that even though there is a discontinuity, the agree- 
ment is fairly close, and that they can be matched by an approximate solution. 

In  each of the papers on the Rayleigh problem the distinguishing feature 
between the incompressible and compressible case is emphasized. This, of course, 
is the presence of the outflow velocity in the compressible case arising from the 
fact that viscous dissipation heats the fluid and a corresponding expansion occurs. 
Typical values of this outflow velocity G can be computed from the analyses 
mentioned. For example, Van Dyke (1952) gives the following expression for the 
small Mach number range in terms of the Mach number, time, and fluid properties: 

where y is the ratio of the specific heats and u the kinematic viscosity. Assuming 
first, as an upper linit, M = 1 and t arbitrary-say tsec, equation (1) gives for 
air V = 4 x 10-3ft./sec. For a low speed M = 0.01, equation (1) gives 

G = 4 x lO-'ft./sec. 

It should be noticed that these are extremely small values. However, the overall 
results of the compressible Rayleigh problem indicate that transverse waves, or 
velocities, can be generated by a pure longitudinal shearing motion. It would be 
desirable to demonstrate the existence of these transverse waves experimentally. 
This was the motivation for the present investigation. 

Experimental verification with a very large impulsive movement of a plate 
would be difficult, and so the question was raised as to whether the same pheno- 
menon could be demonstrated with a different geometry, although in an analogous 
fashion. Examination of the basic equations for compressible plane Couette 
flow reveal the same degree of coupling as for the impulsive plate, i.e. transverse 
waves should occur in the channel for an unsteady motion of the moving walls. 
Also, for Couette flow the wall motion need not be impulsive, but could be a 
small oscillation superimposed on a uniform mean motion. 

This reasoning led to the use of concentric rotating cylinders (outer cylinder 
rotating) to assimilate the plane Couette motion. It is realized that steady flow 
between concentric cylinders does not result in a linear velocity profile, but the 
deviation from linearity is small, i.e. 3 to 4%) with the geometry which was 
adopted. The oscillation of the outer wall is primarily felt in a small region close 
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to it, and so the approximation with circular cylinders was found to be quite 
satisfactory. 

With the circular geometry the problem was then to determine whether any 
periodic transverse velocity existed which could be traced to the wall velocity 
perturbation. 

2. Analytical discussion of the Couette problem 
Unsteady incompressible solution 

So far it has not been possible to obtain a solution for unsteady compressible 
plane Couette flow which is suitable for comparison with experimental results. 
For the incompressible case, DeGroff (1955) has given a solution, and because of 
its significance in the present investigation it wiU be reviewed here. The equations 
of motion reduce to the diffusion equation (as for the incompressible Rayleigh 
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FIGURE 1. Notation for unsteady plane Couette flow 
and orientation of circular cylinders. 

with the boundary conditions Z(0, t )  = 0 and Z(h, t )  = U + E eiAi. The co-ordinate 
system and notation are as shown in figure 1. In  this case, as for the Rayleigh 
problem, conservation of mass for incompressible fluid motion precludes the 
existence of a transverse velocity. 

The real part of the solution to ( 2 )  with the boundary conditions applied is 
given by 

u s  
h 4 A  

~ ( y ,  t )  = - y + -{ea(h+v)cos (At + a y  -ah) - e-a(h-v)cos (At + a y  +ah) 

- 8 h - y )  cos (At - a y  - ah) -t e-&(h+v) cos (At - ay + ah)}, (3) 



The effect of compressibility in unsteady Couette flow 143 

whereA = sinh2ahcos2ah+cosh2ahsin2ahanda = ,/(h/2v). The first part ofthe 
solution is the linear steady-state Couette profile, and the second part is the con- 
tribution from the real part of the perturbation on the wall. It is interesting to 
note that the solution is made up of four components at  different phase angles. 
Since 0 < y < h and generally a $ 1, it can be seen that in the outer portion of the 
channel the first term in the brackets is by far predominant over the other three. 

Analytical determination of the transverse velocity 
The compressible case differs from the incompressible in that the conservation 
equations are highly coupled and the full set of five must be solved simultaneously. 
One of the means of coupling is afforded through viscous dissipation, with the 
result that the velocity plays an important role in the energy equation. Also ( 2 ) ,  
which expresses conservation of momentum in the direction of ii, now involves 
both velocities 5 and V and the density j3. Thus, 

piit $- piY = pUuu, (4) 

where the subscripts denote partial differentiations. 
Linearization of the equations is one means of attack used by Howarth (1951) 

for the flat plate, and if this is done here a particular characteristic of the present 
problem is seen. The linearization here is performed on the basis of a perturbation 
superimposed on the steady incompressible motion. The linearizing relations 
are = po +p, V = v and 5 = ( U y / h )  + u;  hence, if squares of the perturbation 
quantities p, v and u are neglected, there results from (4) 

YY‘ 
u +-v U P  = -u  

h Po 

It is to be noted that the transverse velocity is retained in this equation, and 
thus thelinearized equations are still coupled. This is in contrast with the linearized 
Rayleigh problem which depends on viscous dissipation for the coupling. It sug- 
gests that viscous dissipation can be completely neglected while still allowing an 
examination of coupling effects. This was done in the present case, with the 
viscous dissipation being made small experimentally due to the low air-flow 
velocities considered. 

The coupling in the Rayleigh problem depends primarily on a thermodynamic 
mechanism, whereas the Couette case is seen to exhibit a strong dynamical 
mechanism. From the left-hand side of ( 5 )  it can be seen that for an inviscid fluid 
a transverse velocity must exist to satisfy the fluid acceleration in unsteady shear 

The linearization of (4) indicates that ut and Uv/h  should be of the same order 
of magnitude. A complete solution confirming this is not available; however, it is 
possible to compare the two terms by the following approximate analysis. 

Even though there is no boundary layer in the usual sense, the region near 
the upper wall which is primarily affected by the perturbation can be considered 
as one, and from this a suitable ‘boundary layer displacement thickness ’ defined. 
As an order of magnitude approximation this displacement thickness can be 

flows (ut * 0, UY * 0). 
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found using the incompressible solution; and since it is a time-dependent function, 
its time rate of change is indicative of the transverse velocity. 

Following this procedure, the displacement thickness S* is defined as 

6" = S,h;ay. 

Obtaining u from (3) and integrating with respect to y results in 

1 
8Au 

+ 2 ecah[cos (At + ah) + sin (At + ah)] + sin 2ah( - cos At + sin At)}. 

6" = ~ { 2  sinh 2ah(cos At +sin At) - 2 eDLh[cos (At - ah) +sin (At - ah)] 

(7 )  

The first term will, in general, be much larger than the last three, so that 

(8) 
1 

2a 
6" = - (cos At + sin At) = (v/2h)+ (cos At + sin At). 

The value of 6* for a flat plate oscillating alone in an infinite fluid is given by 
6" = 2/(2v/A) ,  which is J2 times the maximum value for the present problem. 
This is reasonable, since it would be expected that the present thickness would be 
smaller due to the proximity of the fixed plate. 

Next, since v = d6*/dt, differentiation of (7 )  gives 

A 
4Aa 

v = __ (sinh 2ah(cos At - sin At) - eah[cos (At - ah) - sin (At - ah)] 

+ ecah[cos (At + ah) - sin (At + uh)] + sin 2ah(cos At + sin At)}. (9) 

Again the first term is dominant near the outer wall; and if the time is chosen so 
that v is maximum, then 

Returning to (3), the value of ut can be computed. At  the wall this will simply 
be sA sin At from the boundary condition. The order of magnitude for the ratio 
of the first two terms in ( 5 )  is then given by 

Evaluatedatthewall, whereu,isamaximum, (11)givesaratioof (u,h)/( Uv) = 2 
for the experimental range of variables used here. If the ratio is to be found in the 
region where the experimental measurements were made, u, must be computed 
using (3) as indicated above, evaluating the derivative at  the co-ordinate desired. 
If y = 0.9h is arbitrarily chosen, (u,h)/(Uw) = 0.5. The transverse velocity as 
obtained here is independent of the co-ordinate y. However, the result should 
give the right order of magnitude. The results indicate that even at  the wall, or at  
maximum ut, the two terms are of the same order of magnitude; and thus the 
coupling due to the shear field is important and cannot be neglected. 

The quantity h does not have any significance in the impulsive plate problem, 
but if the transverse velocity v is arbitrarily multiplied by a scale factor Ulh, then 
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FIGURE 2 (plate 1). View of cylinder and drive. 
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for Van Dyke’s solution (1) we have (u,h)/( Uw) N 106 for the range of variables 
used above. This is much larger than for the present case. Since u, is the same 
order of magnitude for the two cases, a much larger should be obtained experi- 
mentally in the present case than the 4 x 10-7ft./sec indicated by (1). 

3. Experimental verification 
Apparatus 

The two metal cylinders used were 11-14in. and 14.40in. in diameter and were 
placed with their axes horizontal. The resulting annulus was 1.63 in. across and 
22 in. in axial length. Profile velocity and temperature measurements were made 
in the horizontal plane at the axial mid-point of the annulus. The geometry and 
co-ordinate system for the cylinders are shown in figure 1. A photograph of the 
apparatus along with the driving mechanisms is shown in figure 2, plate 1. The 
report by Hromas & Thompson (1956), which deals with the steady-state heat 
transfer between the cylinders, gives a complete description of the apparatus. 

All the measurements were made with hot-wire anemometers used as resistance 
thermometers for temperature measurements and in the normal manner for 
velocity measurements. The development and calibration of the probes has been 
described in the report by Hromas & Kentzer (1955). 

Experimental technique 
The objective was to examine the unsteady motion in the annulus, and, in 
particular, to determine whether any transverse velocity existed due to the 
imposed perturbation. At the outset one primary factor concerning the pheno- 
menon was realized. This was that any existing transverse velocity would be very 
small, and hence any deviation from an incompressible behaviour would be slight. 
Therefore, the longitudinal velocity profile data should agree fairly well with the 
relatively simple incompressible solution. 

With this fact in mind, the first step was to obtain a series of longitudinal 
velocity profile measurements for several shaking frequencies, and to compare 
them with the incompressible analysis. 

The results indicated that any transverse velocity was indeed small, which led 
to the realization that it would not be suitable to attempt to measure the trans- 
verse velocity component directly. It was then proposed that it might instead be 
possible to measure w indirectly through its effect on another variable. In  
particular, it was thought that, since temperature changes could be detected on 
a much smaller scale than velocity, temperature fluctuations might be detected 
due to the oscillating wall. Using the hot-wire as a resistance thermometer, it  was 
conjectured that if a temperature gradient were to be placed across the flow, any 
transverse velocity component would have a magnified effect on the temperature. 
From data obtained during the previous steady-state heat-transfer experiments 
of Hromas & Thompson (1956), suitable gradients were chosen such that the 
effect of free convection was known to be negligible. 

When a temperature gradient was placed across the flow, definite temperature 
fluctuations were noted to occur at the frequency of the perturbation oscillation 
of the rotating cylinder. In  order to extend the range of data, several different 
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temperature gradients were used with temperature traces being recorded at 
various gap settings in the annulus for each gradient. Instrumentation response 
determined the lowest gradient usable, and free convection the largest. 

It was concluded that by this indirect method the existence of a transverse 
velocity was demonstrated for the problem involved. Assuming that VAT is 
indicative of the forced convection, and then knowing the temperature gradient, 
the frequency of oscillation, and the magnitude of the temperature fluctuations, 
average values for the transverse velocity were computed. 

Comparison between theory and experiment 
The first data obtained were the resultant velocity traces for various frequencies 
and gap settings. For both of these the cylinder walls were at  room temperature. 
The experimental data are compared in figure 3 with the theoretical results for 
unsteady incompressible plane Couette flow. It can be seen that the experimental 
data agreed very closely with the analysis. The maximum discrepancy corre- 
sponds to a velocity of 0.07 ft./sec; and as the sensitivity limit of the instrumenta- 
tion was 0.06-0.07 ft./sec, this error is not significant. 

Percentage velocity 

FIGURE 3. Theoretical and experimental velocity profiles for unsteady 
incompressible Couette flow. 

Further evidence of the close check with the incompressible analysis can be 
seen in figure 4. These were data obtained for a given gap setting and various 
frequencies, keeping constant the ratio €1 U of the perturbation magnitude to the 
mean wall velocity. The four data points fall about 0.1 yo below the theoretical 
values, corresponding to velocity differences of only 0.007 to 0.010 ft./sec. Within 
the accuracy of the instrumentation the above results certainly indicate a close 
check with the incompressible theory. Further, they confirm the initial assump- 
tion that any transverse velocity would be small. 
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When a temperature gradient was formed across the flow, oscillations were 
noticed. Figure 5 gives the magnitude of these oscillations as a function of gap 
setting and temperature gradient. The large degree of scatter was primarily 
caused by difficulties of measurement. Also, the values given in figure 5 were 
measured peak to peak so the maximum deviation from the mean was about 
1.5O.F. 

0 

FIUURE 4. Instantaneous velocity fluctuation va shaking frequency at 96.6 yo gap. 
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FIUURE 5. Maximum temperature oscillation va percentage gap for various 
annulus temperature gradients. 

The computed values of the transverse velocity are shown in figure 6. Values 
obtained range from about 0*002ft./sec to 0.008 ft./sec. Evidently, such small 
values could not have been measured directly with the hot-wire. 

Since numerical values for v are now obtained, a comparison can be made with 
the tentative theoretical values obtained from the computed displacement 
thickness and the linearized compressible equation. Previously, the ratio of 
(u,h)/(Uv) at y = 0.9h had been determined theoretically and found to be 0.5. 

10-2 
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If now u, is computed from the experimental data and v taken to be about 
0.003 ft.lsec, there results 

which indicates at  least an order of magnitude agreement. In  view of the nature 
of the experiments, this is really all that could be expected. 

FIGURE 

4. Discussion of results 

From figure 5 it  can be seen that the magnitude of the temperature fluctuations 
increases with the temperature gradient. In  fact, it was found to be roughly 
proportional to the magnitude of the gradient. It would be desirable to check this 
further, but the instrumentation and free convection set rather definite upper 
and lower limits on the gradients usable. 

The high temperature-gradient readings appeared to have a peak at  about the 
7 0  yo gap position. Why this occurred is not clear. There could possibly have been 
some sort of resonance effect present. A careful examination of the other two sets 
of data shows that the first one or two points tend to be high, so they might also 
have been drawn with a slight peaking effect close to the outer wall. Without the 
aid of an analytical solution it would be difficult to suggest anything of a more 
definite character. 

Transverse velocity Jluctuations 
Since the presence of a transverse component of velocity was detected only 
with a temperature gradient, a question of prime importance was whether the 
gradient was a necessary condition for the existence of transverse velocities. 
Since the gradients used were about the upper and lower limits, the only recourse 
was to resort to an extrapolation to zero temperature gradient with the data 
available. This was done and the resulting curves are shown on figure 6. This 

Temperature JIuctuations 
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procedure was not precise, but it appears from all the data that a non-zero trans- 
verse velocity would be obtained at  room temperature. The values indicated are 
of the order of 0.003 ft./sec. 

The extrapolation did not change the order of magnitude of the observed 
velocity, and hence gives a result which still agrees with the analysis. For this 
reason it was felt the extrapolation was justified. Thus it was concluded that, as 
indicated to be true by the coupling in the basic equations, a periodic transverse 
velocity would exist at zero temperature gradient. 

Possibility of extraneous effects 
Four sources of error which would have affected the results are free convection, 
centrifugal effects, instability regions in the annulus (even though the outer 
cylinder was rotated) and viscous dissipation. For the velocities used one would 
expect viscous dissipation to be very small. Using the results of DeGroff (1956), 

FIQURE 7 

Temperature (OF) 

. Mean temperature profile for unsteady flow (annulus temperature 
gradient-28.6 "F/in.). 

the dissipation was found in this case to raise the fluid temperature a maximum 
of 0.0007 O F .  This is certainly not detectable in the temperature fluctuations. 
Concerning an instability region, it is felt that the extensive hot-wire measure- 
ments which had been made in the previous steady-state investigations would 
have indicated any that existed. 

It was found in the steady-state heat-transfer measurements that free con- 
vection had a large effect near the inner cylinder and in a small confined layer 
along the outer cylinder. These two regions were connected by a linear portion 
free from convection currents. Figure 7 shows a profile for a particular case 
chosen to minimize free convection effects. For all gradients used in the present 
work, the data obtained were restricted to well within the linear regions and 
hence should be independent of free convection. 

Finally, there is the possibility that the transverse velocities noticed could 
have been caused by centrifugal effects. Continuity considerations require that 
regardless of whether the motion is cylindrical or plane, the existence of a trans- 
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verse velocity for the present problem requires some degree of compressibility in 
the fluid. However, centrifugal force can still contribute to the magnitude of the 
transverse velocity, and it remains to see how this compares with the effects of 
the basic coupling as indicated in the equations for plane flow. The coupling for 
plane compressible Couette flow was indicated by the linearized momentum 
equation ( 5 ) .  The corresponding equation for unsteady compressible cylindrical 
Couette flow will now be linearized on the same basis as the plane case, i.e. 
a small perturbation is superimposed on the steady incompressible motion. The 
linearization relations are p = po + p ,  qe = qeo + qs and q,. = qr, where the sub- 
script 0 corresponds to the steady incompressible state. The resulting equation 
for the perturbation velocities is 

The second term on the left-hand side is analogous to the coupling term in (5), 
and the last term on the left-hand side occurs due to the cylindrical nature of the 
flow. However, the relative magnitude of these two terms can be readily deter- 
mined from the relation for the steady incompressible profile 

The ratio between the second and third terms is then 

which for the present apparatus takes the value 4 at r = r2, and approaches 
infinity as r -+ rl. This indicates that centrifugal forces are felt in the experimental 
apparatus, but are never predominant, being 25 yo of the effect at the outer wall 
and approaching zero at the inner wall. For the region of the annulus in which the 
data were obtained, centrifugal force could have caused about 10 to 16 % of the 
measured effect. 
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